Homeintegration How to Integrate x^3/sqrt[(4x^2+9)^3] by Trigonometric Substitution January 28, 2021 0 ∫x3(4x2+9)3dxLet⇒2⋅x=3tanθ2dx=3sec2θdθChangetheexpression9+4x2=9tan2θ+99+4x2=9(tan2θ+1)9+4x2=9sec2θ9+4x2=3secθ(9+4x2)(32)=27sec3θ x=32tanθx3=278tan3θ ∫278tan3θ27sec3θ⋅32⋅sec2θdθ=316∫tan3θsecθdθ316∫cosθ⋅sin3θcos3θdθ=316∫sin3θcos2θdθ316∫sin2θcos2θ⋅sinθdθ=316∫1−cos2θcos2θ⋅sinθdθ−316∫1−z2z2dz−316∫z−2−1dz−316(−1z−z)⇒316(1cosθ+cosθ)+c ⇒316(9+4x23+39+4x2)+c Tags: integration Facebook Twitter