How to Integrate x^3/sqrt[(4x^2+9)^3] by Trigonometric Substitution

 

x3(4x2+9)3dxLet2x=3tanθ2dx=3sec2θdθChangetheexpression9+4x2=9tan2θ+99+4x2=9(tan2θ+1)9+4x2=9sec2θ9+4x2=3secθ(9+4x2)(32)=27sec3θ x=32tanθx3=278tan3θ 278tan3θ27sec3θ32sec2θdθ=316tan3θsecθdθ316cosθsin3θcos3θdθ=316sin3θcos2θdθ316sin2θcos2θsinθdθ=3161cos2θcos2θsinθdθ3161z2z2dz316z21dz316(1zz)316(1cosθ+cosθ)+c
316(9+4x23+39+4x2)+c

Post a Comment

Please Select Embedded Mode To Show The Comment System.*

Previous Post Next Post