Mersenne Numbers

 Mersenne Numbers 


Wenowgivingamethodforfindinglargeprimenumbers,whichisduetoMersenne.Definition:ThenumbersoftheformMn=2n1,n1arecalledMersennenumbers,andthosewhichareprimearecalledMersenneprimes.Itisclearthatifn=mkiscomposite,then2n1=(2m)k1=(2m1)((2m)k1+(2m)k2++2m+1)iscomposite.IntheprefaceofhisCogitataphysicomathematical(1644),theFrenchmonkMersennestatedthatthenumbers2p1wereprimeforp=2,3,5,7,13,17,19,31,67,127and257andcompositeforallotherprimesp<257.In(1772)EulerverifiedthatM31wasprime,butM61,M89,M107areprimes,whileM67,M257arecomposite,andthiscontradictswiththedeclarationofMersenneinfivepoints.ButwhatwementionedearlierdoesnotmeanthatMersennenumbersarenotimportant,asmanyimportanttheorieshavebeenbasedonthemtodeterminetheprimality.WecanuseWolframMathematicatofindoutthecorrectprimenumberslessthan257andtheyareasfollows:p=2,3,5,7,13,17,19,31,61,89,107,127.Theorem:Ifq=2n+1isprime,thenwehavethefollowing:(a)q|Mn+2,providedthatq3(mod8)orq5(mod8).(b)q|Mn,providedthatq1(mod8)orq7(mod8).See(Burton,2011,p.229).Examples:(1)Letn=11,thenq=23,sinceq7(mod8).Thus23|M11,(VerifiedbyMathematica).(2)Letn=14,thenq=29,sinceq5(mod8).Thus29|M14+2,(VerifiedbyMathematica).

Post a Comment

Please Select Embedded Mode To Show The Comment System.*

Previous Post Next Post