HomeNumber Theory Mersenne Numbers August 30, 2021 0 Mersenne Numbers Wenowgivingamethodforfindinglargeprimenumbers,whichisduetoMersenne.Definition:ThenumbersoftheformMn=2n−1,n≥1arecalledMersennenumbers,andthosewhichareprimearecalledMersenneprimes.Itisclearthatifn=mkiscomposite,then2n−1=(2m)k−1=(2m−1)((2m)k−1+(2m)k−2+…+2m+1)iscomposite.IntheprefaceofhisCogitataphysico−mathematical(1644),theFrenchmonkMersennestatedthatthenumbers2p−1wereprimeforp=2,3,5,7,13,17,19,31,67,127and257andcompositeforallotherprimesp<257.In(1772)EulerverifiedthatM31wasprime,butM61,M89,M107areprimes,whileM67,M257arecomposite,andthiscontradictswiththedeclarationofMersenneinfivepoints.ButwhatwementionedearlierdoesnotmeanthatMersennenumbersarenotimportant,asmanyimportanttheorieshavebeenbasedonthemtodeterminetheprimality.WecanuseWolframMathematicatofindoutthecorrectprimenumberslessthan257andtheyareasfollows:p=2,3,5,7,13,17,19,31,61,89,107,127.Theorem:Ifq=2n+1isprime,thenwehavethefollowing:(a)q|Mn+2,providedthatq≡3(mod8)orq≡5(mod8).(b)q|Mn,providedthatq≡1(mod8)orq≡7(mod8).See(Burton,2011,p.229).Examples:(1)Letn=11,thenq=23,sinceq≡7(mod8).Thus23|M11,(VerifiedbyMathematica).(2)Letn=14,thenq=29,sinceq≡5(mod8).Thus29|M14+2,(VerifiedbyMathematica). Tags: Number Theory Facebook Twitter