Applications on Recurrence Relations

Ex (1): The number of bacteria in a colony doubles every hour. If a colony begin with five bacteria, how many will be present in n hours?

\begin{array}{l} {a_n} = 2\;{a_{n - 1}}\;Where\;\;{a_n} = \# \;\;of\;bactiria\;at\;time\;n,\;with\;intial\;condintion\;{a_0} = 5\\ \Rightarrow {a_n} = 2\;{a_{n - 1}}\;,\;\;{a_0} = 5\\\\ Observe\;that\;\;\;\;{a_1} = 2\;{a_0} = 2 * 5 = 10\\ {a_2} = 2\;{a_1} = 2 * 10 = 20\;\\ {a_3} = 2\;{a_2} = 2 * 20 = 40 \end{array}
.
.
.


\[\begin{array}{l} Ex\left( 2 \right):\;{a_n} = 2\;{a_{n - 1}} - \;{a_{n - 2}}\;,\;\;\;\;{a_0} = 0\;,{a_1} = 3\\\\ 1 - Find\;{a_2},\;{a_3},\;\;{a_4}\;.\\\\ \Rightarrow \;\;{a_2} = 2\;{a_1} - {a_0} = 2\left( 3 \right) - 0 = 6\\ \;{a_3} = 2\;{a_2} - {a_1} = 2\left( 6 \right) - 3 = 9\\ \;{a_4} = 2\;{a_3} - {a_2} = 2\left( 9 \right) - 6 = 12\\\\ 2 - Determine\;whetther\;\;{a_n} = 3n,\;is\;a\;solution\;for\;this\;recurrence\;relation\;.\\\\ \Rightarrow plug\;in\;{a_n} = 3n\;,\;in\;the\;recurrence\;relation\;,\\ \;{a_n} = 2\;{a_{n - 1}} - \;{a_{n - 2}}\\ 3n\;does\;it\;equal\;2\left( {3n - 3} \right) - \left( {3n - 6} \right)\\ \left( {6n - 6} \right) - \left( {3n - 6} \right) = 3n\\ Thus\;\;{a_n} = 3n\;\;is\;a\;solution\;of\;the\;recurrence\;relation.\\\\ 3 - Is\;{a_n} = {2^n},\;\;a\;solution\;for\;this\;recurrence\;relation\;?\;\\\\ \Rightarrow \;\;{a_n} = 2\;{a_{n - 1}} - \;{a_{n - 2}}\\ {a_n} = {2^n} \Rightarrow {2^n}does\;it\;equal\;2 * {2^{n - 1}} - {2^{n - 2}}\\ {2^n} - {2^{n - 2}}\\ {2^n}\; \ne {2^n} - {2^{n - 2}}\\ Thus\;\;{a_n} = {2^n}\;\;is\;a\;solution\;of\;the\;recurrence\;relation. \end{array}\]

Post a Comment

Please Select Embedded Mode To Show The Comment System.*

Previous Post Next Post