HomeCombinatorial Applications on Recurrence Relations May 03, 2021 0 Ex (1): The number of bacteria in a colony doubles every hour. If a colony begin with five bacteria, how many will be present in n hours?an=2an−1Wherean=#ofbactiriaattimen,withintialcondintiona0=5⇒an=2an−1,a0=5Observethata1=2a0=2∗5=10a2=2a1=2∗10=20a3=2a2=2∗20=40 ... Ex(2):an=2an−1−an−2,a0=0,a1=31−Finda2,a3,a4.⇒a2=2a1−a0=2(3)−0=6a3=2a2−a1=2(6)−3=9a4=2a3−a2=2(9)−6=122−Determinewhettheran=3n,isasolutionforthisrecurrencerelation.⇒pluginan=3n,intherecurrencerelation,an=2an−1−an−23ndoesitequal2(3n−3)−(3n−6)(6n−6)−(3n−6)=3nThusan=3nisasolutionoftherecurrencerelation.3−Isan=2n,asolutionforthisrecurrencerelation?⇒an=2an−1−an−2an=2n⇒2ndoesitequal2∗2n−1−2n−22n−2n−22n≠2n−2n−2Thusan=2nisasolutionoftherecurrencerelation. Tags: Combinatorial Facebook Twitter