Proof The quadratic congruence x^2+1≡0 (mod p), where p is an odd prime, has a solution if and only if p≡1 (mod 4).

 


Thequadraticcongruencex2+10(modp),wherepisanoddprime,hasasolutionifandonlyifp1(mod4).Proof.Letabeanysolutionofx2+10(modp),sothata21(modp).Becausepdoesnotdividea,theoutcomeofapplyingFermatslittletheoremis1ap1(a2)(p1)/2(1)(p1)/2(modp)Therefore,mustbeoftheformthatis.Nowfortheoppositedirection.Intheproduct(p1)!=1×2×p12×p+12×(p2)(p1)Wehavethecongruencesp11(modp)p22(modp)p+12p12(modp)Rearrangingthefactorsproduces(p1)!1×(1)×2(2)××p12×(p12)(modp)(1)p12(1×2××p12)2(modp)Becausethereare(p1)/2minussignsinvolved.ItisatthispointthatWilsonstheoremcanbebroughttobear;for(p1)!1(modp),whence1(p1)!(1)p12[(p12)!]2(modp)Ifweassumethatpisoftheform4k+1,then(1)(p1)/2)=1,leavinguswiththecongruence1[(p12)!]2(modp)Theconclusionisthattheintegersatisfiesthequadraticcongruencex2+1=0(modp).Letustakealookatanactualexample,say,thecasewhichisaprimeoftheform4k+1.Here,wehavep12=6,anditiseasytoseethat6!=7205(mod13)And52+1=260(mod13)Thus,theassertionthat[((p1)/2)!]2+1=0(modp)iscorrectforp=13.See(Burton,2011,p.95)

Post a Comment

Please Select Embedded Mode To Show The Comment System.*

Previous Post Next Post