How to integrate cos ln(x)


 

\[\smallint \cos \ln x{\rm{d}}x\] \begin{array}{l} By\;Substitution\\ suppose \Rightarrow z = \ln x\\ {e^z} = x\\ dz = \frac{1}{x}\;dx\\ \smallint {{\rm{e}}^{\rm{z}}}\cos z{\rm{d}}z\\ By\;Parts\\ Let \Rightarrow u = \cos z\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;dv = {e^z}\\ du = - sinz\;\;\;\;\;\;\;\;\;\;\;\;v = {e^z}\\ \smallint {e^z}\cos z\;\;\;dz = {e^z} \cdot \cos z + \smallint {e^z}\sin z{\rm{d}}z\\ By\;Parts\\ Let \Rightarrow g = \sin z\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;df = {e^z}\\ dg = cosz\;\;\;\;\;\;\;\;\;\;\;\;f = {e^z}\\ \smallint {e^{\rm{z}}}cos\;z{\rm{d}}z = {e^z}\cos z + \left( {\;{e^z}\sin \;{\rm{z}}\; - \smallint {e^z}\cos z{\rm{d}}z\;} \right)\\ 2\smallint {{\rm{e}}^z}\cos z{\rm{d}}z = {{\rm{e}}^z}\sin z + {{\rm{e}}^z}\cos z\\ \smallint {{\rm{e}}^z}\cos z{\rm{d}}z = \frac{1}{2}\left( {{e^z}\sin z + {e^z}\cos z} \right) \end{array}

Post a Comment

Please Select Embedded Mode To Show The Comment System.*

Previous Post Next Post