How to integrate sqrt(1+x^(1/3))


 

\[∫1/√(1+∛x) dx\]

By Substitution


\begin{array}{c} \text { Suppose } \begin{aligned} \Rightarrow z &=\sqrt[3]{x} \\ z^{3} &=x \end{aligned} \\ 3 z^{2} d z=d x \\ \int \frac{3 z^{2}}{\sqrt{1+z}} \mathrm{~d} z \end{array} By Substitution


\[Suppose⇒u=√(1+z)\]

\begin{array}{l} u^{2}=1+z \quad, \quad z^{2}=\left(u^{2}-1\right)^{2} \\ 2 u d u=d z \\ \int \frac{3\left(u^{2}-1\right)^{2}}{u} d u \\ 3 \int \frac{u^{4}-2 u^{2}+1}{u} d u \\ 3 \int u^{3}-2 u+\frac{1}{u} d u \\ 3\left(\frac{u^{4}}{4}-u^{2}+\ln u\right)+c \\ 3\left(\frac{(\sqrt{1+z})^{4}}{4}-(\sqrt{1+z})^{2}+\ln |\sqrt{1+z}|\right)+c \\ 3\left(\frac{(\sqrt{1+\sqrt[3]{x}})^{4}}{4}-(\sqrt{1+\sqrt[3]{x}})^{2}+\ln |\sqrt{1+\sqrt[3]{x}}|\right)+c \end{array}

Post a Comment

Please Select Embedded Mode To Show The Comment System.*

Previous Post Next Post