Homeintegration How to Integrate sqrt(tan x) January 27, 2021 0 ∫tanxdxBySubstitutionz=tanxz2=tanx2zdz=sec2xdx=(tan2x+1)dx=(z4+1)dxdx=2zz4+1dz∫2z2z4+1dz∫(z2+1)+(z2−1)z4+1dz=∫z2+1z4+1dz+∫z2−1z4+1dz∫1+1z2z2+1z2dz+∫1−1z2z2+1z2dz=∫1+1z2(z−1z)2+2dz+∫1−1z2(z+1z)2−2dzbysubstitutionlet⇒u=z−1zdu=(1+1z2)dzandlet⇒v=z+1zdv=(1−1z2)dz∫duu2+2+∫dvv2−2=12tan−1u2+122ln|v−2v+2|+c12tan−1z−1z2+122ln|z+1z−2z+1z+2|+c12tan−1tanx−1tanx2+122ln|tanx+1tanx−2tanx+1tanx+2|+c Tags: integration Facebook Twitter