How to Integrate sqrt(tan x)

 


tanxdxBySubstitutionz=tanxz2=tanx2zdz=sec2xdx=(tan2x+1)dx=(z4+1)dxdx=2zz4+1dz2z2z4+1dz(z2+1)+(z21)z4+1dz=z2+1z4+1dz+z21z4+1dz1+1z2z2+1z2dz+11z2z2+1z2dz=1+1z2(z1z)2+2dz+11z2(z+1z)22dzbysubstitutionletu=z1zdu=(1+1z2)dzandletv=z+1zdv=(11z2)dzduu2+2+dvv22=12tan1u2+122ln|v2v+2|+c12tan1z1z2+122ln|z+1z2z+1z+2|+c12tan1tanx1tanx2+122ln|tanx+1tanx2tanx+1tanx+2|+c

Post a Comment

Please Select Embedded Mode To Show The Comment System.*

Previous Post Next Post