\[\begin{array}{l}\\
Modulo\;4,\;\;we\;have\;four\;possible\;remainders\;\\\\
a = 0,1,2,\;\;or\;3\;for\;any\;integer\;a;\;\;consequently,\;\;{a^2} = 0\;or\;1\;(mod4).\\\\
It\;follows\;that,\;\;for\;arbitrary\;integers\;a\;and\;b,{a^2} + {b^2} = 0,\;\;1,or\;2\;(mod4).\\\\
\;Because\;p = 3\;(mod4),\;the\;equation\;p = {a^2} + {b^2}\;is\;impossible.\\
\end{array}\]