HomeLinear Algebra Proof that every Eigenvalue of self adjoint operator is real June 26, 2021 0 Theorem: Every Eigenvalue of self adjoint operator is real SupposeTisselfadjoint⇒T=T∗Letλ∈FbeeigenvalueofT⇒∃v∈Vs.tTv=λvnotethat:λ‖v‖2=λ⟨v,v⟩=⟨λv,v⟩=⟨Tv,v⟩=⟨v,T∗v⟩=⟨v,Tv⟩=⟨v,λv⟩=λ¯⟨v,v⟩=λ¯v2λ=λ¯→λisreal Tags: Linear Algebra Facebook Twitter