Proof that every Eigenvalue of self adjoint operator is real


 Theorem: Every Eigenvalue of self adjoint operator is real

SupposeTisselfadjointT=TLetλFbeeigenvalueofTvVs.tTv=λvnotethat:λv2=λv,v=λv,v=Tv,v=v,Tv=v,Tv=v,λv=λ¯v,v=λ¯v2λ=λ¯λisreal

Post a Comment

Please Select Embedded Mode To Show The Comment System.*

Previous Post Next Post