Theorem: Every Eigenvalue of self adjoint operator is real
\[\begin{array}{l}\\
Suppose\;T\;is\;self\;adjoint \Rightarrow T = {T^ * }\\\\
\;Let\;\lambda \in F\;\;\;be\;eigenvalue\;of\;T\\\\
\Rightarrow \exists \;v \in \;{\cal V}\;s.t\;\;\;Tv = \lambda v\\\\
note\;that:\lambda {\left\| v \right\|^2} = \lambda \left\langle v \right.,\left. v \right\rangle \\\\
= \;\langle \lambda v,v\rangle \\\\
= \;\langle Tv,v\rangle \\\\
= \;\langle v,{T^ * }v\rangle \\\\
= \;\langle v,Tv\rangle \\\\
= \;\langle v,\lambda v\rangle \\\\
= \;\bar \lambda \langle v,v\rangle = \;\bar \lambda {v^2}\\\\
\lambda = \;\bar \lambda \to \lambda \;is\;real\\
\end{array}\]
Tags:
Linear Algebra