Inverse Functions And Logarithms 3

Inverse Trigonometric Functions



We know that the sine function y=sin x is not one-to-one (use the Horizontal Line Test). But the function f(x)=sin x\frac{{ - \pi }}{2} \le x \le \frac{\pi }{2} is one-to-one so we can find the inverse of it

sin1y=xy=sinx,π2xπ2
Thus,1y1


\[Note:{\sin ^{ - 1}}x \ne \frac{1}{{\sin x}}\]


Remember:


So now we know that the range of sine is between -1 and 1 
and the range of inverse sine is between \frac{{ - \pi }}{2} \le x \le \frac{\pi }{2}
for that, we should know the facts that
  1. sin1(sinx)=x,forπ2xπ2
  2. sin(sin1x)=x,for1x1





the same thing we can do with cos and tan 
cos1(cosx)=x,for0xπ
cos(cos1x)=x,for1x1




tan1x=ytany=x,andπ2yπ2



















Post a Comment

Please Select Embedded Mode To Show The Comment System.*

Previous Post Next Post