Inverse Trigonometric Functions
We know that the sine function y=sin x is not one-to-one (use the Horizontal Line Test). But the function f(x)=sin x, is one-to-one so we can find the inverse of it
\[Note:{\sin ^{ - 1}}x \ne \frac{1}{{\sin x}}\]
Remember:
So now we know that the range of sine is between -1 and 1
and the range of inverse sine is between
for that, we should know the facts that
- \[{\sin ^{ - 1}}(\sin x) = x,\,for\,\frac{{ - \pi }}{2} \leqslant x \leqslant \frac{\pi }{2}\]
- \[\sin ({\sin ^{ - 1}}x) = x,\,for\, - 1 \leqslant x \leqslant 1\]
the same thing we can do with cos and tan
\[{\cos ^{ - 1}}(\cos x) = x,\,for\,0 \leqslant x \leqslant \pi \]
\[\cos ({\cos ^{ - 1}}x) = x,\,for\, - 1 \leqslant x \leqslant 1\]
\[{\tan ^{ - 1}}x = y \Leftrightarrow \tan y = x\,\,,\,and\,\,\frac{{ - \pi }}{2} \leqslant y \leqslant \frac{\pi }{2}\]
Tags:
calculus