Homeintegration How to Integrate sqrt(cot x) January 27, 2021 0 ∫cotxdx=BySubstitutionlet⇒u=cotxu2=cotx2udu=−sec2xdx=−(1+cot2x)dx=−(1+u4)dxdx=−2u1+u4du∫−2u21+u4du−∫(u2+1)+(u2−1)u4+1du=−∫u2+1u4+1du−∫u2−1u4+1du−∫1+1u2u2+1u2du−∫1−1u2u2+1u2du=−∫1+1u2(u−1u)2+2du−∫1−1u2(u+1u)2−2dubysubstitutionlet⇒g=u−1udg=(1+1u2)duandlet⇒v=u+1udv=(1−1u2)du−∫dgg2+2−∫dvv2−2=−12tan−1g2−122ln|v−2v+2|+c−12tan−1u−1u2−122ln|u+1u−2u+1u+2|+c−12tan−1cotx−1cotx2−122ln|cotx+1cotx−2cotx+1cotx+2|+c Tags: integration Facebook Twitter