How to Integrate sqrt(cot x)


 

cotxdx=BySubstitutionletu=cotxu2=cotx2udu=sec2xdx=(1+cot2x)dx=(1+u4)dxdx=2u1+u4du2u21+u4du(u2+1)+(u21)u4+1du=u2+1u4+1duu21u4+1du1+1u2u2+1u2du11u2u2+1u2du=1+1u2(u1u)2+2du11u2(u+1u)22dubysubstitutionletg=u1udg=(1+1u2)duandletv=u+1udv=(11u2)dudgg2+2dvv22=12tan1g2122ln|v2v+2|+c12tan1u1u2122ln|u+1u2u+1u+2|+c12tan1cotx1cotx2122ln|cotx+1cotx2cotx+1cotx+2|+c

Post a Comment

Please Select Embedded Mode To Show The Comment System.*

Previous Post Next Post