\[\begin{array}{l} \smallint \frac{{x{{\rm{e}}^{{{\bf{2}}^x}}}}}{{{{\left( {{\bf{1}} + {\bf{2}}x} \right)}^{\bf{2}}}}}dx\\\\ By{\rm{ }}Part\;\;\;\;\;\;\;\\ \;\;\;\;\;\;\;\;\;\;\;\;\;u = x{e^{2x}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;dv = {\left( {1 + 2x} \right)^{ - 2}}\\ \;\;\;\;\;\;\;\;\;\;\;\;du = ({e^{2x}} + x{e^{2x}})dx\;\;\;\;\;\;\;\;v = \frac{{ - 1}}{{2\left( {1 + 2x} \right)}}\;\;\;\;\\\\ \frac{{ - x{e^{2x}}}}{{2\left( {1 + 2x} \right)}} + \smallint \frac{{\left( {1 + 2x} \right){e^{2x}}}}{{2\left( {1 + 2x} \right)}}{\rm{d}}x\\\\ \Rightarrow \frac{{ - {\rm{x}}{e^{2x}}}}{{\overline {\left( {1 + 2x} \right)} 2}} + \frac{{{e^{2x}}}}{4} + c \end{array}\]
Tags:
integration