Some special types of simple graphs

 1) Complete graphs: In the simple graph that has an edge between any pair of distinct vertices. If it has n vertices, then it is denoted by Kn.

Ex:



\begin{array}{l} Let\;G = {k_n} = \left( {V,E} \right).\;Then\\ - \;\left| V \right| = n\\ - \;\left| E \right| = \left( {\begin{array}{*{20}{c}} n\\ 2 \end{array}} \right)\\ \to 2e = \mathop \sum \limits_{v \in V} \deg \left( v \right) = n\left( {n - 1} \right)\\ \to e = \frac{{n\left( {n - 1} \right)}}{2} \end{array}


- Degree sequence n-1, n-1, n-1, - - - , n-1 . 

Kis (n-1) -- regular. 

Kis not bipartite for all n > 2 . 

2) Null graphs: Graphs with no edges, denoted by Nnwhen it has n vertices.

Ex: 


\begin{array}{l} Let\;G = {N_n} = \left( {V,E} \right).\;Then\\ - \;\left| V \right| = n\\ - \;\left| E \right| = 0 \end{array}

- Degree sequence 0, 0, 0, - - - , 0 . 

Nn is 0 -- regular. 

Nn is bipartite. 

3) Path: The path Pn ( n > 1 ) has n vertices, and n-1 edges. The edges are {v1, v2}, {v2, v3}, - - - , {vn-1, vn}.

Ex: 



\begin{array}{l} Let\;G = {P_n} = \left( {V,E} \right).\;Then\\ - \;\left| V \right| = n\\ - \;\left| E \right| = n - 1 \end{array}

- Degree sequence 2, 2, 2, - - - , 2, 1, 1 . 

Pn is not regular for n > 2. 

Pis bipartite. 

4) The cycle Cn , n > 2 , consist of n vertices, and the edges are {v1, v2}, {v2, v3}, - - - , {vn-1, vn} & {vn,v1}.

Ex: 


\begin{array}{l} Let\;G = {C_n} = \left( {V,E} \right).\;Then\\ - \;\left| V \right| = n\\ - \;\left| E \right| = n \end{array}

- Degree sequence 2, 2, 2, - - - , 2 . 

Cn is 2 -- regular. 

Cn is bipartite iff n is even. 

5) wheels: The wheel Wn (n > 2) is obtained when an additional vertex is added to the cycle Cn and this new vertex is connected to each of the vertices of Cn .

Ex: 



\begin{array}{l} Let\;G = {W_n} = \left( {V,E} \right).\;Then\\ - \;\left| V \right| = n + 1\\ - \;\left| E \right| = 2n \end{array}

- Degree sequence n, 3, 3, - - - , 3 . 

Wn is not regular unless n = 3. 

Wn is not bipartite. 

6) n - Cubes ( n - dimensional hypercube ) denoted by Qn : The vertex set of Qn is the set of all bit strings of length n. Two vertices are adjacent iff the bit strings that they represent differ in exactly one bit position.

Ex:


\begin{array}{l} Let\;G = {Q_n} = \left( {V,E} \right).\;Then\\ - \;\left| V \right| = {2^n}\\ - \;To\;find\;the\;number\;of\;edges\;\\ 2e = \mathop \sum \limits_{v \in V} \deg \left( v \right) = \mathop \sum \limits_{v \in V} {\rm{n}} = n\;{2^n}\\ \to e = n\;{2^{n - 1}} \end{array}

- Degree sequence n-1, n, n, - - - , n . 

Qn is n -- regular. 

Qn is  bipartite . 

7) Complete Bipartite Graphs: The complete bipartite graph Km,n is the graph that has its vertex set partitional into two subsets of m, n vertices respectively. there is an edge between two vertices iff  one vertex is in the first subset and the other vertex is in the second subset. 

Ex: 


\[\begin{array}{l} Let\;G = {K_{m,n}} = \left( {V,E} \right).\;Then\\ - \;\left| V \right| = m + n\\ - \;\left| E \right| = m*n \end{array}\]

- Degree sequence of Km,n  (m >= n) 

 m, m, - - - , m    ,     n, n, - - - , n . 

Km,n  is regular iff m = n. 

Km,n  is  bipartite . 

Post a Comment

Please Select Embedded Mode To Show The Comment System.*

Previous Post Next Post