HomeNumber Theory (Lucas’ criterion) If the prime p divides Fm, where m ≥ 2, then p = k 2^(m+2)+1 for some positive integer k. August 09, 2021 0 Proof that If the prime p divides Fm, where m ≥ 2, then p = k 2^(m+2)+1 for some positive integer k. (Lucascriterion)IftheprimepdividesFm,wherem≥ 2,then p=k2(m+2)+1forsomepositiveintegerk.Proof.Letb=2(2(m−2))(2(2(m−1))−1).Since(1)22m+1≡0(modp)Wehave(2)b2=22m−1(22m−2×22m−1+1)≡−2×22m≡−2×22m+2(22m+1)≡2(modp)Fromthisitfollowsthatb2m+1≡22m≡−1(modp)Andthusb2m+2≡1(modp)Consequently,accordingtoMultiplicativeOrder,ordpb=2jforsomej=m+2.However,ifj<m+2,andsom+1−j=0,then,0≡1−1=(b2j)2m+1−j−1=b2m+1−1≡22m−1(modp)Whichcontradictswiththestatement(1).Hence,(3)ordpb=2m+2Thenumberspandbarecoprimeduetostatement(2).Therefore,applyingFermat′slittletheorem,i.e.b(p−1)=1(modp),andusingMultiplicativeOrderandstatement(3),weobtainp−1=kordpb=k2m+2.Hencep=k2(m+2)+1.′See(Krizek,2001,p.82)′ Tags: Number Theory Facebook Twitter