(Lucas’ criterion) If the prime p divides Fm, where m ≥ 2, then p = k 2^(m+2)+1 for some positive integer k.

 Proof that If the prime p divides Fm, where m ≥ 2, then p = k 2^(m+2)+1 for some positive integer k. 


(Lucascriterion)IftheprimepdividesFm,wherem 2,then p=k2(m+2)+1forsomepositiveintegerk.Proof.Letb=2(2(m2))(2(2(m1))1).Since(1)22m+10(modp)Wehave(2)b2=22m1(22m2×22m1+1)2×22m2×22m+2(22m+1)2(modp)Fromthisitfollowsthatb2m+122m1(modp)Andthusb2m+21(modp)Consequently,accordingtoMultiplicativeOrder,ordpb=2jforsomej=m+2.However,ifj<m+2,andsom+1j=0,then,011=(b2j)2m+1j1=b2m+1122m1(modp)Whichcontradictswiththestatement(1).Hence,(3)ordpb=2m+2Thenumberspandbarecoprimeduetostatement(2).Therefore,applyingFermatslittletheorem,i.e.b(p1)=1(modp),andusingMultiplicativeOrderandstatement(3),weobtainp1=kordpb=k2m+2.Hencep=k2(m+2)+1.See(Krizek,2001,p.82)

Post a Comment

Please Select Embedded Mode To Show The Comment System.*

Previous Post Next Post