Mersenne Numbers
\[\begin{array}{l}
We\;now\;giving\;a\;method\;for\;finding\;large\;prime\;numbers,\;which\;is\;due\;to\;\\\\
Mersenne.\\\\
Definition:\;The\;numbers\;of\;the\;form\;\;\;\;{M_{n\;}} = {2^{n\;}} - 1,\;\;n \ge \;1\;\;are\;called\;Mersenne\;\\\\
numbers,\;and\;those\;which\;are\;prime\;are\;called\;Mersenne\;primes.\\\\
\;\;\;It\;is\;clear\;that\;if\;n = mk\;is\;composite,\;then\\\\
\;{2^n} - 1 = {\left( {{2^m}} \right)^k} - 1 = \left( {{2^m} - 1} \right)\left( {\;{{\left( {{2^m}} \right)}^{k - 1}} + {{\left( {{2^m}} \right)}^{k - 2}} + \ldots + {2^m} + 1} \right)is\;composite.\\\\
In\;the\;preface\;of\;his\;Cogitata\;physico - mathematical\;\left( {1644} \right),\;the\;French\;\\\\
monk\;Mersenne\;stated\;that\;the\;numbers\;\;{2^p} - 1\;were\;prime\;for\;\\\\
p\; = \;\;2\;,\;3\;,\;5\;,\;7\;,\;13\;,\;17\;,\;19\;,\;31\;,\;67\;,\;127\;\;and\;257\;and\;composite\;for\;all\;other\;\\\\
primes\;p\; < \;257\;.\\\\
\;\;\;\;In\;\left( {1772} \right)\;Euler\;verified\;that\;\;{M_{31}}\;\;was\;prime,\;but\;\;{M_{61\;}}\;,\;{M_{89}}\;,\;{M_{107}}\;are\;\\\\
primes\;,\;while\;\;{M_{67}}\;,\;\;{M_{257}}\;are\;composite,and\;this\;contradicts\;with\;the\;\\\\
declaration\;of\;Mersenne\;in\;five\;points.\\\\
But\;what\;we\;mentioned\;earlier\;does\;not\;mean\;that\;Mersenne\;numbers\;\\\\
\;are\;not\;important,\;as\;many\;important\;theories\;have\;been\;based\;on\\\\
them\;to\;determine\;the\;primality.\\\\
We\;can\;use\;Wolfram\;Mathematica\;to\;find\;out\;the\;correct\;prime\;numbers\;less\;\\\\
than\;257\;and\;they\;are\;as\;follows:p\; = \;2,3,5,7,13,17,19,31,61,89,107,127.\\\\
Theorem\;:\;If\;q\; = \;2n\; + 1\;\;is\;prime,\;then\;we\;have\;the\;following:\;\\\\
\left( a \right)\;q\;|\;{M_n} + 2\;,\;provided\;that\;q\; \equiv \;3\;\left( {\;mod\;8\;} \right)\;or\;q\; \equiv \;5\;\left( {\;mod\;8} \right).\\\\
\left( b \right)\;q\;|\;{M_n}\;,\;provided\;that\;q\; \equiv \;1\;\left( {\;mod\;8\;} \right)\;or\;q\; \equiv \;7\;\left( {\;mod\;8\;} \right).\\\\
See\;\left( {Burton,\;2011,\;p.229} \right).\;\\\\
Examples:\;\\\\
\left( 1 \right)\;Let{\rm{ }}n = 11,{\rm{ }}then{\rm{ }}q{\rm{ }} = {\rm{ }}23,{\rm{ }}since{\rm{ }}q{\rm{ }} \equiv {\rm{ }}7{\rm{ }}\left( {{\rm{ }}mod{\rm{ }}8} \right).{\rm{ }}Thus\;23|{M_{11}},{\rm{ }}\left( {Verified{\rm{ }}by{\rm{ }}Mathematica} \right).\\\\
\left( 2 \right){\rm{ }}Let{\rm{ }}n = 14,{\rm{ }}then{\rm{ }}q = 29,{\rm{ }}since{\rm{ }}q{\rm{ }} \equiv {\rm{ }}5{\rm{ }}\left( {mod{\rm{ }}8} \right).{\rm{ }}Thus{\rm{ }}29|{M_{14}}{\rm{ + 2}},{\rm{ }}\left( {Verified{\rm{ }}by{\rm{ }}Mathematica} \right).
\end{array}\]